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Abstract

The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and

demonstrated on electromagnetic wave propagation problems. This report extends the Linear Bicharac-

teristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and

perfect electrical conductors. This is accomplished by proper implementation of the LBS for homogeneous

lossy dielectric and magnetic media and for perfect electrical conductors. Heterogeneous media are modeled

through implementation of surface boundary conditions and no special extrapolations or interpolations at

dielectric material boundaries are required. Results are presented for one-dimensional model problems on

both uniform and nonuniform grids, and the FDTD algorithm is chosen as a convenient reference algorithm

for comparison. Tile results demonstrate that the explicit LBS is a dissipation-free, second-order accurate

algorithm which uses a smaller stencil than the FDTD algorithm, yet it has approximately one-third the

phase velocity error. The LBS is also more accurate on nonuniform grids.

1 Introduction

Numerical solutions of the Euler equations in Computational Fluid Dynamics (CFD) have il-

lustrated the importance of treating a hyperbolic system of partial differential equations with the

theory of characteristics and in an upwind manner (as opposed to symmetrically in space). These

two features provide the motivation to use the Linear Bicharacteristic Scheme (LBS), or the up-

wind leapfrog method, for the construction of many practical wave propagation algorithms. In a

hyperbolic system, the solutions (i.e. waves) propagate in preferred directions called characteris-

tics. A characteristic can be defined as a propagation path along which a physical disturbance is

propagated [1]. The relevance to Maxwell's equations is intuitively obvious because electromag-

netic waves have preferred directions of propgation and finite propagation speeds.

The upwind leapfrog method has a more compact stencil compared with a classical leapfrog

method. Clustering the stencil around the characteristic enables high accuracy to be achieved

with a low operation count in a fully discrete way [2]. This leads to a more natural treatment of
outer boundaries and material boundaries. The LBS treats the outer boundary condition naturally

without nonreflecting approximations or matched layers. The interior point algorithm predicts

the outgoing characteristic variables at the domain boundaries. Through knowledge of the wave

propagation angle, the local coordinates can be rotated to align with the characteristics, at which

the boundary condition becomes almost exact. Therefore, no extraneous boundary condition or

matched layers are required, which can introduce errors into the solution. The LBS also offers a
natural treatment of dielectric interfaces, without any extrapolation or interpolation of fields or

material properties near material discontinuities.

The LBS was originally developed to improve unsteady solutions in computational acoustics

and aeroacoustics [3]-[8]. It is a classical leapfrog algorithm, but is combined with upwind bias in

the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm,

which results in no dissipation, and it permits more flexibility by the ability to adopt a charac-



teristicbased method. The use of characteristic variables allows the LBS to treat the outer com-

putational boundaries naturally using the exact compatibility equations. The LBS offers a central

storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to

nonuniform grids. It has previously been applied to two and three-dimensional free-space elec-

tromagnetic propagation and scattering problems [4], [7], [8].

The objective of this report is to extend the LBS to model both homogeneous and heteroge-

neous lossy dielectric and magnetic materials and perfect electrical conductors (PECs). Results

are presented for several one-dimensional model problems, and the FDTD algorithm is chosen

as a convenient reference for comparison. Sections 2 and 3 present the LBS implementation for
homogeneous and heterogeneous materials, respectively. Section 4 discusses the outer radiation

boundary condition and Section 5 reviews the Fourier analysis. Finally, Section 6 presents results

for one-dimensional model problems and Section 7 provides concluding remarks.

2 Homogeneous Materials

Maxwell's equations for linear, homogeneous and lossy media in the one-dimensional TE case

(taking O/Oy = O/Oz = 0) are

Ot ¢ Ox e Ev (1)

OH: _ 1 ( OE:, c_*H:) (2)Ot # Ox

where a and a* are the electric and magnetic conductivities, respectively. Using the electric dis-

placement D = _E and making the substitution c = 1/Iv_ gives

OD v OHz a
Ot + _ + 7 Dy = 0 (3)

10Hz OD_ a*
c2 0t +_ +Izc---_Hz=O (4)

The procedure for the LBS is to transform the dependent variables D_ and Hz to characteristic vari-

ables. Based upon the numerical method of characteristics for electromagnetics [9], information

propagates (in one space dimension) along the characteristic curves specified by the characteristic
equations

dx

dt +c (5)

which show that waves propagate in the +x directions with a finite physical speed of c. The

algorithm developed here is the simplest leapfrog scheme described by Iserles [10] combined with

upwind bias, or simply, the Linear Bicharacteristic Scheme (LBS). To transform (3) and (4) into

characteristic form, we first multiply (4) by c and then add and subtract from (3) to give

( ) ('-)0 D._+!.H: 0 D_j+ 7 z a

Ot + c Ox + -D'v + --Hz = 0 (6)
e l* c
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_) (Dy - _"HO - c + -Dy - --H_. =0
Ot Ox e It c

(7)

Now define

1
P = D._+-He (8)

C

1
Q = D:_--Hz (9)

C

to represent the right and left propagating solutions, respectively. P and Q are otherwise known

as the characteristic variables. Using these definitions, (6) and (7) can be rewritten as

o7 + %-7 + 2 + P+2 t,, 0=°

0(2 0(2 1 (_ o*) 1(_ _r_7)ot ':bT+_ 7 ,, /'+_ + (2=0

It is convenient to define and store the collowing coefficients before time-stepping begins

(10)

(11)

a

(7 O'*

{ it
O" O'*

e it

02)

(13)

Equations (10) and (11) can be rewritten more simply as

OP OP __p b
0T + ,:-5-/+ 2 +_(2=o

aQ 0(2 bp a
cgt C_x +2 +2 o=0

(14)

(15)

To develop the discretized algorithm for a one-dimensional system, the stencils of Figure I are

proposed for the LBS. To solve the wave propagation problem without introducing dissipation, it

is necessary that the stencil have central symmetry so the scheme employed is reversible in time

[2]. The stencil in Figure la is used for a right propagating wave and the stencil in Figure lb is

used for a left propagating wave. The upwind bias nature of these stencils is thus clearly evident.

References [3], [2], [6], [7], [8] clearly show that the LBS is second-order accurate.

Note that the last two terms in (14) and (15) represent the electric and magnetic loss (or source)

terms. A key element in developing an accurate LBS scheme is proper treatment of these source
terms. Several methods for treating these source terms have already been investigated [6], [7],

[8] for aeroacoustic applications. For electromagnetics, several methods for treating these source

terms were investigated during this project. For example, one can index both source terms in (14)

and (15) at time level n, which Thomas [6] has shown to be unstable. Another example would be

to index both source terms at time level n + 1 resulting in a semi-implicit method. Other examples

involve applying an exponential transformation to (14) and (15) to eliminate the source term and

then perform a linearization of the exponential terms in the discretized equations. However, the
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Figure 1: One-dimensional upwind leapfrog computational stencils for right-going (a) and left-
going (b) characteristics.

method found to be most efficient and accurate is to index the self source term in (14) (i.e. P) at

time level n + 1 and to index the coupled source term Q at time level n. This avoids a matrix

solution at each grid point, and the formulation easily limits to the perfect conductor condition as
o" --4 (x).

Using the stencils shown in Figure I and the source term indexing scheme outlined above, the
resulting finite difference equations for (14) and (15) are

{pT_ _ *_-1(,':'+'-,':')+,,, <l )
2At

(Q:'+I - QU_ + (Q:_I -Qn-l_, / i+1 j
2At

) b_,,
+ c PF - aP + = 0

- c ( Q _+ I - Q i )Ax n + a-ou+l+2-_z-bRn2z =0

(16)

(17)

These equations can be rewritten in the form

(1 + ,tAt)p_,+1 = p/,.,__l+ (1 - 2u) (P;_ - Pi"-i)- bAtQ_' (18)

(l +aAt)Q _'+1, = "_i+lt)"-l-(1-2u)(Qi_+l-Q_ ') - bAtPi '_ (19)

where v = cAt/Ax is the Courant number. We now rewrite equations (18) and (19) as

p_t+i = nit/(1 +aAt) (20)

Q T_+ 1i = R_'/(1 + aAt) (21)

where R_ and R,_' are the residuals defined by

n pn- 1 n
RI = *i-, + (1 - 2,,) (p/ - P/nl ) - bAtQ_ (22)

n n- I n n
R2 = Qi+l -- (1 - 2u) (Qi+I -- Qi) - bAtpn (23)

Equations (20) and (20) are the update equations for lossy dielectric and magnetic materials. Note
that as cr --+ vc, then we have the PEC condition that P'_+t = O '_+1, -_i = 0 as required.
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3 Heterogeneous Dielectrics

One of the difficulties with the conventional FDTD algorithm is the error in treatment of mate-

rial discontinuities. Recent research efforts have attempted to reduce this error source by suitable

averaging of material properties across the interface or by interpolation or extrapolation of the

electromagnetic fields near these material boundaries [11], [12]. The advantage of the LBS is that

the characteristic based nature of the algorithm leads to a very natural treatment of dieletric inter-

faces. Since the LBS works with characteristic variables, the slope of characteristic curves in each

material will be different, and the physical boundary conditions permit an elegant and efficient

implementation of a dielectric interface boundary condition. This numerical boundary condition

implements the physics exactly, with no averaging, interpolation or extrapolation required.

To implement the dielectric material interface boundary condition, consider the one-dimensional

grid shown in Figure 2. The dielectric interface is located at grid point i and the dielectric materials

p,Q Ey

i-3

Y

EHY2

z2

d

i-2 i+l

P1, Q 1 P2, Q 2

I_ 2 ,t.1- 2,_2

© O

i+2 i+3

x

Figure 2: One-dimensional computational grid for the LBS showing characteristic variables, a di-
electric interface located at cell i, and corresponding field components and characteristic variables

used for the surface boundary condition.

can be lossy. The characteristic variables at grid point i, Pi and Qi, are split into two components

each: Pl, Q1, P'_ and Q2. The terms PI and Q1 exist just to the left of the material interface as shown

in Figure 2. The remaining terms P2 and Q2 exist just to the right of the material interface. For

material 1, equation (20) is used to predict the value for p_,+l at the boundary and for material

2, equation (21) is used to predict the value for Q_+I. To complete the implementation, the Q_,+l

and p,_+a terms must be updated. These terms are updated by enforcing the physical boundary
conditions on the electromagnetic field at the material boundary. We can then solve for Q_+l and

p_+l in terms of the "known" characteristic variables p_+l and Q_+l. To develop this procedure,

the electromagnetic boundary conditions on the tangential field components are given by

Eyl = Ey2 _ Dyl _ D_2 (24)
E1 _2



Hz_ = Hz2 (25)

For the right-going wave, substituting (24) and (25) into (8) gives

_uJ + (26)
Cl

__ 2{-2{1 (p,,y+l q.. Q,_+I)..}_ _C2 (p,_+l- Q._+,) (27)

Similarly, substituting (24) and (25) into (9) yeilds

Q,_,+l = rv,+l_u2 - 1H;_+ , (28)
C2

__ 2f1{2 (p;t+l q_ Q;t+,)- _c2C1 (p/t+l - Qln+l) (29)

Since pp+l and r},,+l"_2 are determined at boundary point i from the usual update equations (we

treat them as "known" variables), it is necessary to express p,_+l and Q],+I in terms of these
variables. Rearranging (27) and (29) gives

P2"+1 = Tt pp+l + FL Q,_,+1 (30)

O] '+1 = P2Pl n+I+T2Q_ +1 (31)

where F1,2 and Ti,2 are reflection and transmission coefficients given by

(;2E2 -- Cl¢ 1 )El = k{:2e2 + el{1 (32)

2e2Cl

T_ - (33)
C2{ 2 q- el(- 1

F2 = ( Clf-1 -c2_2)\C2{2 if_ CI{1 (34)

2{lC2

I"1 c2{2 + clel (35)

From (30), it is clear that the right-going wave in material 2 is a sum of a transmitted portion

of the right-going wave in material 1 plus a reflected portion of the left-going wave in material

2. A similar argument can be made for the left-going wave in material 1. In fact, the reflection
coefficients FI,2 can be shown to be identical to the classical Fresnel reflection coefficients. The

transmission coefficients also have the same form as the Fresnel transmission coefficients. Special

care needs to be taken when the LBS calculates the solution at grid points i - 1 and i + 1 for a

material interface at grid point i. At grid point i - 1, the term Qni+l in (23) becomes Q]'. At grid

point i, the terms p n and Qp in (22) and (23) become P{_ and Q_, respectively. At grid point i + 1,

the term e/n 1 in (22) becomes P._. Rearranging equations (18) and (19) for grid point i we have

(1 + a 1 At) Pp+ = p___l + (1 - 2ul) (Pp - - bl /_1_{_ (36)

(1 + a2 At) Qn+l Ozt--1 - (1 - 2u2) tQ,_2 _--- "_i+1 _, i+1 -- Q_2t) - b2 AtP,_ (37)

where I-'1 = C 1At/z2k2:, and u2 = c2At/Az. The terms al, a2, hi, b2 refer to the a and b coefficients in

(12) and (13) for materials 1 and 2, respectively. These equations are now easily solved for p_+l
and Q,_+l and then (30) and (31) are applied to obtain r-,+l and Q,,+I*2 2 "



4 Outer Boundary Condition

The outer radiation boundary condition is used to terminate the computational lattice and per-

mit outgoing waves to pass unreflected through the lattice boundaries [13]. The FDTD algorithm

uses a spatial central difference operator where it uses field values from neighboring cells to up-
date solution variables. Thus it cannot be used at the terminating faces of the problem domain.

For example, the solution for a wave propagating left to right will eventually require a grid point

outside the domain. To terminate the computational lattice, an additional equation (boundary

condition) is needed to solve the system and this introduces information into the solution that is

not required by Maxell's equations.

On the contrary, the LBS requires no extraneous boundary condition. For the present LBS im-

plementation, like the Method of Characteristics [9], the interior point algorithm calculates the

left-going characteristic at the left boundary (i.e. i = 0) and the right-going characteristic at the

right boundary (i.e. i = imax). Thus for the LBS, at grid point i = 0, equation (21) calculates Q(0)

and the incoming right-going characteristic, P(0), is specified as a boundary condition. This same

analysis applies at the right boundary where (20) calculates P(imax) and the incoming left-going
characteristic, Q(imax), is specified as a boundary condition. Shang [14] has noted for charac-

teristic based multidimensional and nonuniform grid problems, in principle, the local coordinate

system can be rotated to align with the characteristics, and the compatibility equations provide an

exact boundary condition. However, a simple, yet effective approximation for multidimensional

characteristic based approaches is to set the incoming flux or characteristic variables at the outer

boundaries to zero and let the interior point algorithm predict the outgoing variables. When the

wave motion is aligned with a coordinate axis, this boundary condition is exact.

5 Fourier Analysis

Various excellent Fourier analyses of the LBS have already been completed [3], [2], [6], [7],

[8]; therefore, only the important results and conclusions from these previous analyses will be

reviewed in this report. Most of the information presented is summarized from [2]. The stability

condition for the LBS is i., < 1, where I., is the Courant number _, = cAt/Ax. The normalized phase

velocity for the classical leapfrog or FDTD algorithm is given by

c* _ _,sin(kAx) (38)
c sin (a;At)

Making the substitution kAx = 27r/N and war = 2m,/N, where N is the number of points per

wavelength, (38) becomes

c* _ 1_sin (27r/N) (39)
c sin (27ru/N)

The leading error term of the phase speed error is given by

47r2

6N2V (v 2- 1) (40)
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It is clearfrom thiserror termthat theFDTDalgorithmissecond-orderaccurate.For theLBS,the
dispersionrelationis

c* (2_, - 1) sin (Tr/N)

c = sin (2_n_/N - 7r/N) (41)

The leading error term of the phase speed error for the LBS is

4/r 2

12N----_ v (1 - t.,) (1 - 2v) (42)

Results are shown in Figure 3 for the normalized phase speeds at different Courant numbers 0') for

the FDTD method and the LBS. To achieve less than 1% phase speed error requires about N = 15
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Figure 3: Percentage error in phase speed versus grid resolution for (a) the FDTD method; and (b)

the LBS. Plot parameter is _, the Courant number.

for the FDTD method and about N = fi for the LBS. Note that the LBS has zero dispersion error
for r_ = 1 and _ = 0.5. Based upon these results, the LBS method is about 2-3 times as enonomical

as the FDTD method for the same level of accuracy.

6 Results

Since the LBS has previously been applied to free-space propagation problems on uniform

grids [4], [7], this report concentrates on one-dimensional model problems involving free-space

propagation on nonuniform grids and reflection from lossy dielectric materials on both uniform

and nonuniform grids. The problem space size is 1000 cells with nonperiodic boundary condi-

tions. For the uniform grid, a space step size of 1 cm is used, the time step is 0.33 ps and the

Courant number _ = 1. For the boundary conditions, a Gaussian point source at i = 0 is used to



specifyP(0) and Q(1001)) = 0. For many complex geometries, it is often desirable to implement

nonuniform grids to reduce the computational effort and memory resources and to improve mod-

eling accuracy. We define a nonuniform grid by using a mesh stretch ratio of M = A:r,,_ax/A.rm_,,

which is periodic every 10 cells. Figure 4 shows an expanded view of a typical one-dimensional

non-uniform grid with a mesh stretch ratio of 3 and a periodicity of 10 cells. The Courant num-

I]lktl!11I I I I I l!111111111t111Li I I L:IhllLklllllll:llI I I I I II
0 0.2 0.4 0.6 0.8 1

x (meters)

Figure 4: Section of a one-dimensional non-uniform grid with a mesh stretch ratio of 3 and a base

cell size of I cm. The grid variation is periodic every 10 cells.

ber for a nonuniform grid is defined by cAt/A_:,,_n, where Ax,,,,, is the smallest cell size in the

nonuniform grid.

The first problem is a free space propagation problem on a nonuniform grid with a mesh

stretch ratio of 2 that is periodic every 10 cells. In this case, periodic boundary conditions are used

and the Gaussian pulse is allowed to propagate for 724 meters, which leads to a time integration of

90,504 time steps. The Courant number L, = 0.8, the time step was At = 2.67 ns and the Gaussian

pulse had a FWHM pulse width of 2.26 ns. This pulse contained significant spectral content up

to 1 GHz. Figure 5 shows the error in the electric field after n = 90,504 time steps for both the

FDTD method and the LBS. Note for this particular problem, the error for the LBS is exceptionally

0.3/ i , '_ : :
/

0 2

"_ 0 1

o
-0 1

-0 2

o_
-0 3

-0.4 I i i I I i i
724"126728330732734736338740

x (meters)

Figure 5: Percent error in electric field for a free space propagation problem on a nonuniform grid

using the FDTD method and the LBS.
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low. Fromfurtherexperimentation,it was demonstrated that the LBS provided excellent results
(within 0.1% accuracy) up to a mesh stretch ratio of 3.

The next problem involved reflection and transmission for a lossy dielectric half-space. A uni-

form grid was used first with the dielectric half-space for 5 _< x G 10 m with material parameters

er_ = 4, a2 = 0.02, c_ = 0 and ;tr2 = 1 and with u = 1. This problem tests the implementa-

tion of the dielectric surface boundary condition which exists in the grid at cell i = 500. Figure
6 shows the time-domain scattered electric field for both the LBS and the FDTD method at cell

i = 400. Note the agreement between the two methods is almost indistinguishable. The complex

D
.,-q
_4

-k)
D
(1)

r--q

0 '1
-0.05

> -0.i
v L

_3 -0.15 -

• -0.2
u_

-0.25

-0.3 -

-0.35

-0.4

-0.45

i0 15

FDTD

LBS ........

l I I I I I

20 25 30 35 40 45 50

Time (ns

Figure 6: Time-domain electric field recorded at cell i -- 400 for reflection from a lossy dielectric

half-space using FDTD and the LBS on a uniform grid.

reflection coefficient was calculated at cell i = 400 for both methods and is plotted in Figure 7

along with the exact solution. The agreement between methods is again excellent. Next, a lossless

dielectric was inserted in the uniform grid domain for 5 < x < 10 m with material parameters

e_ = 80, c_ = a_ = 0 and/_r_ = 1. The complex reflection coefficient was computed from the

time-domain fields and is shown in Figure 8. Clearly the LBS is superior in this instance, with a re-

flection coefficient that overlays the exact solution. Note that the LBS solution is exact for this case

because of the exact implementation of the physical boundary conditions on the electromagnetic
field for the LBS. The lossy dielectric results were not as accurate because the dielectric bound-

ary conditions assumed a frequency-independent impedance. If the frequency dependent surface

impedance were used, then the results would be more accurate. Finally, the same lossy dielectric

problem was analyzed on a nonuniform grid which is periodic every 10 cells and with a mesh

stretch ratio of 2. The material parameters were again _r2 = 4, er2 = 0.02, (_ = 0 and t+r_ = 1.

The dielectric surface boundary condition remains at i = 500, which puts the :r coordinate for

the boundary at 7.24 meters. Electric field data was recorded at x = 5 meters (i.e. i = 346). The

time-domain fields are shown in Figure 9 and Figure 10 shows the reflection coefficient magnitude
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Figure 7: Reflection coefficient magnitude versus frequency for reflection from a lossy dielectric

half-space using FDTD and the LBS on a uniform grid.
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Figure 8: Reflection coefficient magnitude versus frequency for reflection from a lossless dielectric

half-space using FDTD and the LBS on a uniform grid.
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results. We clearly see that the LBS is superior on a nonuniform grid, with a reflection coefficient

v

r-q

"H
q4

D
-,-'1

D
(1)

H

0 O5
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-o os - i

-0.1 -

-0 3_5

-0.2 -
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-0 35

-0.4
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I I 1 i i
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.................LBS

I I i i i
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Time (ns)

Figure 9: Time-domain electric field recorded at cell i = 346 for reflection from a lossy dielectric

half-space using FDTD and the LBS on a non-uniform grid.

accuracy level within 2%. Further results for uniform and nonuniform grids and perfect conduc-
tors can be found in [15].

7 Conclusions

This report has extended the Linear Bicharacteristic Scheme for computational electromagnet-

ics to model homogeneous and heterogeneous lossy dielectric and magnetic materials and perfect

conductors. It was demonstrated that the LBS has several distinct advantages over conventional

FDTD algorithms. First, the LBS is a second-order accurate algorithm which is about 2-3 times as

economical. The LBS can also be made to have zero dispersion error in certain instances. Second,

the LBS provides a more natural and flexible way to implement surface boundary conditions and

outer radiation boundary conditions by using characteristics and an upwind bias technique pop-

ular in fluid dynamics. Third, the LBS provides more accurate results on nonuniform grids. The

upwind biasing provides a more flexible generalization to unstructured grids. A dielectric surface

boundary condition was implemented and results were provided for several one-dimensional

model problems involving lossy dielectric materials and free space. The results indicate that the

LBS is a superior algorithm for treatment of dielectric materials, especially its performance on

nonuniform grids. Based upon these results, the LBS is a very promising alternative to a conven-

tional FDTD algorithm for many applications. Extensions to two and three-dimensional problems
should be straightforward.
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